Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 84(7): 1013-1028, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38294491

RESUMO

Cytidine deaminase (CDA) functions in the pyrimidine salvage pathway for DNA and RNA syntheses and has been shown to protect cancer cells from deoxycytidine-based chemotherapies. In this study, we observed that CDA was overexpressed in pancreatic adenocarcinoma from patients at baseline and was essential for experimental tumor growth. Mechanistic investigations revealed that CDA localized to replication forks where it increased replication speed, improved replication fork restart efficiency, reduced endogenous replication stress, minimized DNA breaks, and regulated genetic stability during DNA replication. In cellular pancreatic cancer models, high CDA expression correlated with resistance to DNA-damaging agents. Silencing CDA in patient-derived primary cultures in vitro and in orthotopic xenografts in vivo increased replication stress and sensitized pancreatic adenocarcinoma cells to oxaliplatin. This study sheds light on the role of CDA in pancreatic adenocarcinoma, offering insights into how this tumor type modulates replication stress. These findings suggest that CDA expression could potentially predict therapeutic efficacy and that targeting CDA induces intolerable levels of replication stress in cancer cells, particularly when combined with DNA-targeted therapies. SIGNIFICANCE: Cytidine deaminase reduces replication stress and regulates DNA replication to confer resistance to DNA-damaging drugs in pancreatic cancer, unveiling a molecular vulnerability that could enhance treatment response.


Assuntos
Adenocarcinoma , Citidina Desaminase , Inibidores da Síntese de Ácido Nucleico , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Citidina Desaminase/metabolismo , DNA , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Replicação do DNA , Inibidores da Síntese de Ácido Nucleico/uso terapêutico
3.
Int J Mol Sci ; 20(5)2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30813527

RESUMO

Integrins are transmembrane cell receptors involved in two crucial mechanisms for successful fertilization, namely, mammalian intracellular signaling and cell adhesion. Integrins α6ß4, α3ß1 and α6ß1 are three major laminin receptors expressed on the surface of mammalian cells including gametes, and the presence of individual integrin subunits α3, α6, ß1 and ß4 has been previously detected in mammalian sperm. However, to date, proof of the existence of individual heterodimer pairs in sperm and their detailed localization is missing. The major conclusion of this study is evidence that the ß4 integrin subunit is expressed in mouse sperm and that it pairs with subunit α6; additionally, there is a detailed identification of integrin heterodimer pairs across individual membranes in an intact mouse sperm head. We also demonstrate the existence of ß4 integrin mRNAs in round spermatids and spermatogonia by q-RT-PCR, which was further supported by sequencing the PCR products. Using super-resolution microscopy accompanied by colocalization analysis, we located integrin subunits as follows: α6/ß4-inner apical acrosomal membrane and equatorial segment; α3, α6/ß1, ß4-plasma membrane overlaying the apical acrosome; and α3/ß1-outer acrosomal membrane. The existence of α6ß4, α3ß1 and α6ß1 heterodimers was further confirmed by proximity ligation assay (PLA). In conclusion, we delivered detailed characterization of α3, α6, ß1 and ß4 integrin subunits, showing their presence in distinct compartments of the intact mouse sperm head. Moreover, we identified sperm-specific localization for heterodimers α6ß4, α3ß1 and α6ß1, and their membrane compartmentalization and the presented data show a complexity of membranes overlaying specialized microdomain structures in the sperm head. Their different protein compositions of these individual membrane rafts may play a specialized role, based on their involvement in sperm-epithelium and sperm-egg interaction.


Assuntos
Compartimento Celular , Integrinas/metabolismo , Multimerização Proteica , Espermatozoides/metabolismo , Animais , Integrinas/química , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Domínios Proteicos , Subunidades Proteicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA